Chapter 7: Eligibility Traces

Dynamic
Programming

Temporal-
Difference Monte Carlo
Learning
R. S. Sutton and A. G. Barto: Rei Leamning: An

N-step TD Prediction

Midterm

(A Idea: Look farther into the future when you do TD backup

(1,2,3,...,n steps)

1D (1-step) 2-step 3-step

[1.

o o o

R. S. Sutton and A. G. Barto: Rei: Learning: An

120

100

80

ool EEEEEEEEEEEEEREER] Series1

40

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Mean = 77.33 Median = 82

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Mathematics of N-step TD Prediction

(3 Monte Carlo:

n-step Monte Carlo

2 T-t-1
R =t + VY s+ 4y 7T r

A TD: RY =r, +yV,(s,,,)

= Use V to estimate remaining return

O n-step TD:

» 2stepreturn: R =7, +yr,, +vVi(s,,,)

= T+l

. n 2 n-1 n
= n-step return: R =g 4y, +y 4ty T, 1V (s,,)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Learning with N-step Backups

(3 Backup (on-line or off-line):

AV/(s) = a[R" - V(s)]
(3 Error reduction property of n-step returns

mSax‘E]r {R|s, =s}-V" (S)‘ =y" msax‘V(s) - (S)‘
H—/

n step return
_ J \)
e

Maximum error using n-step return Maximum error using V

(3 Using this, you can show that n-step methods converge

R. S. Sutton and A. G. Barto: Rei: Leaning: An

A Larger Example

ON-LINE
n-sTeP TD

(3 Task: 19 state

random walk
RMS error,
averaged over
first 10 episodes

(3 Do you think there
is an optimal n (for
everything)?

OFF-LINE
n-STEP TD

RMS error,
averaged over
first 10 episodes

R. S. Sutton and A. G. Barto: Rei: Leaning: An

Random Walk Examples

start

(3 How does 2-step TD work here?
(3 How about 3-step TD?

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Averaging N-step Returns

3 n-step methods were introduced to help with One backup
TD(M) understanding
(1 Idea: backup an average of several returns
= e.g. backup half of 2-step and half of 4-
step
1 1

R™ =—R? +—RY
2 2

0=

(O Called a complex backup
= Draw each component

= Label with the weights for that
component

=

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Forward View of TD(M\)

TD(A), A-return

O TD(A) is a method for

averaging all n-step backups
= weight by A™! (time since
visitation)
= A-return: =2
A _ _ - n-1p(n)
R’ =(1-HF "R o
O Backup using A-return:
N (-2 .
AV(s)=a[R - V(s,)] , :
- &
Z }LT~1-1
R. S. Sutton and A. G. Barto: Rei: Leamning: An i 9
Relation to TD(0) and MC
(3 A-return can be rewritten as:
T-t-1
R =(1-2) Y X'R™+ X"'R,
n=1
Until termination ~ After termination
O If A =1, you get MC:
T-t-1
er _ (1_ 1) Zln—er(n) + lT_t_er _ R,
n=1
 If A =0, you get TD(0)
T-t-1
RA = (1_0) Eon—er(n) + OT—t—er = R(l)
n=1
R. S. Sutton and A. G. Barto: Rei Leaming: An i 11

A-return Weighting Function

weight given to
the 3-step retum total area = 1

decay by A

weight given to
actual, final retum

Time ——=

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Forward View of TD(A) 11

(3 Look forward from each state to determine update from
future states and rewards:

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

A-return on the Random Walk Backward View of TD(\)

5571 T

OFF-LINE (A The forward view was for theory
A-RETURN

- (3 The backward view is for mechanism
RMS error, 5|
averaged over

first 10 episodes |

[New variable called eligibility trace e,(s)| X°

= On each step, decay all traces by yA and increment the
a-h . ; . trace for the current state by 1

35

o = Accumulating trace

(3 Same 19 state random walk as before .
y)‘er—l(s) lf §# S[accumulating eligibility trace
(0 Why do you think intermediate values of A are best? e(s) =

V)\et_l(S) + 1 lf § = Sr 1111 || | times of visits to a state

R. S. Sutton and A. G. Barto: Rei: Leaning: An i 13 R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 14

On-line Tabular TD(\) Backward View

Initialize V(s) arbitrarily and e(s) =0, for all s ES
Repeat (for each episode) :
Initialize s
Repeat (for each step of episode) :
a < action given by mfor s
Take action a, observe reward, r, and next state s’
O <=r+yV(s)-V(s)
e(s)<—e(s) +1

For alls: 6: =l +VVz(St+1)_Vt(St)
V(s) <= V(s) + ade(s)
e(s) < yAe(s) (3 Shout 6, backwards over time
s (O The strength of your voice decreases with temporal
Until s is terminal distance by yA

R. S. Sutton and A. G. Barto: Rei: Leaning: An i 15 R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 16

Relation of Backwards View to MC & TD(0)

(1 Using update rule:
AV,(s) = ad e (s)

(3 As before, if you set A to 0, you get to TD(0)
(3 If you set A to 1, you get MC but in a better way
= Can apply TD(1) to continuing tasks

= Works incrementally and on-line (instead of waiting to
the end of the episode)

R. S. Sutton and A. G. Barto: Rei: Leaning: An

On-line versus Off-line on Random Walk

A Online TD()
55 9
: OFF-LINE 54 A on Random Walk
< A-RETURN R
Average 77
RMSerror, 5| RMSE
averaged over N over First
first 10 episodes | 10 Trials 35 =N
354 34
3= T - | 25— T T T T 1
o 01 02 03 0 0.2 0.4 0.6 08 1
o o

[Same 19 state random walk

O On-line performs better over a broader range of parameters

R. S. Sutton and A. G. Barto: Rei: Leaning: An

Forward View = Backward View

(A The forward (theoretical) view of TD(A) is equivalent to
the backward (mechanistic) view for off-line updating
(3 The book shows:

T-1 T-1
AV (s) =Y AV (s)I.,

%(_}%(_}

Backward updates Forward updates

algebra shown in book

T-1 T-1 T-1 T-1 T-1 T

- -1
() = Y al, (S, AVA(s)L, = Dal, > (),
t=0 k=t t=0 t=0 k=t

A
=0
(3 On-line updating with small o is similar

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Control: Sarsa(\)

O Save eligibility for state-action

pairs instead of just states Sarsa(})
(% - s, a
e(sa)= vhe,_(s,a)+1 ifs=sanda=aq, 1 L.
o ye,_(s,a) otherwise
(1-2) 2

0,.,(s,a) = Q,(s,a) +ad.e,s,a)

(1-2) 22
51 =gt yQt(‘YHl’aHl) - Qr(st’ ar)

>=1 . . a‘ff'r

A

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

20

Sarsa(A) Algorithm

Initialize Q(s,a) arbitrarily and e(s,a) = 0, for all s,a
Repeat (for each episode) :
Initialize s,a
Repeat (for each step of episode) :
Take action a, observe r,s’
Choose a’ from s’ using policy derived from Q (e.g. ? - greedy)
O < r+y0(s’,a") - 0(s,a)
e(s,a)<e(s,a) +1
For all s,a:
s, a) < Q(s, a) + ade(s, a)
e(s,a) < yle(s,a)
s<sia<a'

Until s is terminal

R.S. Sutton and A. G. Barto: Rei Leaming: An 21

Three Approaches to Q(\)

Watkins's Q(A)

[How can we extend this to Q- -5
learning? (}

O If you mark every state action
pair as eligible, you backup

. OR
over non-greedy policy (-4

= Watkins: Zero out
eligibility trace after a non-
greedy action. Do max .. .
when backing up at first e -

non-greedy choice. o

(1-3) 2

1+vyke, (s,a) ifs=s,a=a,0_(s,a,)=max,6Q_(s,a)
e(s,a) = 0 if Q,_,(s,,a,) = max, Q,_(s,,a)
yhe,_\(s,a) otherwise

0,..(s,a) = Q (s,a) +ade,(s,a)
O, =1, +ymax, 0(s,,,a) - 0,(s,,a,)

R. S. Sutton and A. G. Barto: Rei: Leaning: An

23

Sarsa(A) Gridworld Example

Action values increased Action values increased
Path taken by one-step Sarsa by Sarsa()) with A=0.9
[] e B s I
[[’ ¥
. “H - 4
T TR % SERNNENE
e i Nt

(0 With one trial, the agent has much more information about how to get
to the goal

= not necessarily the best way

(3 Can considerably accelerate learning

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Watkins’s Q(\)

Initialize Q(s,a) arbitrarily and e(s,a) = 0, for all s,a
Repeat (for each episode) :
Initialize s,a
Repeat (for each step of episode) :
Take action a, observe r,s’
Choose a’ from s’ using policy derived from Q (e.g. ? - greedy)
a’ < argmax, O(s',b) (if a ties for the max, then a” < ')
S <—r+y0(s,a") - Q(s.a’)
e(s,a)<e(s,a) +1
For all s,a:
s, a) < Q(s,a) +ade(s, a)
Ifa’' = a*, then e(s,a) < yAe(s,a)
else e(s,a) <=0
s<sha<a'

Until s is terminal

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

22

24

Peng’s Q(A)

Naive Q(A\)

O Disadvantage to Watkins’s
method:

Peng's Q(A)

= Early in learning, the
eligibility trace will be
“cut” (zeroed out)
frequently resulting in little
advantage to traces

O Peng:

= Backup max action except ’
atend (-2 %

= Never cut traces
O Disadvantage:

7-1-1
= Complicated to implement T

R. S. Sutton and A. G. Barto: Rei:

Leaming: An i 25

Comparison Task

(1 Idea: is it really a problem to
backup exploratory actions?

1-2 « s
(1-2) 2 O Is this truly naive?
(0 Works well is preliminary

empirical studies

Never zero traces

Always backup max at
current action (unlike Peng
or Watkins’s)

What is the backup diagram?

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 26

Comparison Results

(3 Compared Watkins’s, Peng’s, and Naive (called
McGovern’s here) Q(A) on several tasks.

» See McGovern and Sutton (1997). Towards a Better Q(
A) for other tasks and results (stochastic tasks,
continuing tasks, etc)

(0 Deterministic gridworld with obstacles
» 10x10 gridworld
= 25 randomly generated obstacles

Policy steps

— Watkins
— Peng
—- McGovem

Steps to goal for greedy policy

= 30 runs
j— j— j— — 1 00 2'0 4'0 5‘0 8‘0 1(‘70 1‘20 11;0 1!'30 1;0 2[')0
s a=0.05,y=0.9,A=0.9, e =0.05, accumulating traces Episodes
From McGovern and Sutton (1997). Towards a better Q(\) From McGovern and Sutton (1997). Towards a better Q(A)
R. S. Sutton and A. G. Barto: Rei: Leamning: An i 27 R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 28

Convergence of the Q(\)’s

(3 None of the methods are proven to converge.
s Much extra credit if you can prove any of them.
3 Watkins’s is thought to converge to Q*
3 Peng’s is thought to converge to a mixture of Q™ and Q*
(3 Naive - Q*?

R. S. Sutton and A. G. Barto: Rei: Leaning: An i 29

Replacing Traces

(3 Using accumulating traces, frequently visited states can
have eligibilities greater than 1

= This can be a problem for convergence

(0 Replacing traces: Instead of adding 1 when you visit a
state, set that trace to 1

| ‘ | | | ‘ | times of state visits

[\[\M FN accumulating trace

]\J_M N replacing trace

vie, (s) ifs=s,
e(s) = .
1 ifs=s,

R. S. Sutton and A. G. Barto: Rei: Leaning: An i 31

Eligibility Traces for Actor-Critic Methods

(A Critic: On-policy learning of V7. Use TD(A) as described
before.
(O Actor: Needs eligibility traces for each state-action pair.

(0 We change the update equation:

p(s,a)+ad, ifa=aand s=s,

p,,.<s,a>={ {0 Pu(sa)=p,(s.a)+ad e, (s,a)

p,(s,a) otherwise

(0 Can change the other actor-critic update:

p(s,a)+ad [1-m(s,a)] ifa=a ands=s,

p,.1<s,a>={ {0 Prn(s5.0) = py(s.0)+adie,(s.a)

p,(s,a) otherwise

yle, (s,a)+1-m,(s,,a) if s=sanda=aq,

where e(s,a) = { Ve, (s,a) otherwise

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 30

Replacing Traces Example

(3 Same 19 state random walk task as before
(O Replacing traces perform better than accumulating traces over more

values of A
0.5
i
é
0.4 4 !
accumulating !
RMS error] traces %
atbest o
0.3 4
0.2 replacing
traces
0 02 04 06 08 1
R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 32

Why Replacing Traces?

O Replacing traces can significantly speed learning

O They can make the system perform well for a broader set of
parameters

O Accumulating traces can do poorly on certain types of tasks

Why is this task particularly onerous
for accumulating traces?

R. S. Sutton and A. G. Barto: Rei: Leaning: An

Implementation Issues

(3 Could require much more computation
= But most eligibility traces are VERY close to zero

(A If you implement it in Matlab, backup is only one line of
code and is very fast (Matlab is optimized for matrices)

R. S. Sutton and A. G. Barto: Rei: Leaning: An

33

35

More Replacing Traces

(O Off-line replacing trace TD(1) is identical to first-visit MC

[Extension to action-values:

= When you revisit a state, what should you do with the
traces for the other actions?

= Singh and Sutton say to set them to zero:

1 ifs=s and a =gq,
e(s,a)= 0 ifs=s and a=aq,
yle,_,(s,a) if =3,

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Variable A

(3 Can generalize to variable A

yAe, (s) ifs=s,
¢ (s) = {y)u,et_l(s) +1 ifs=y,

[Here A is a function of time
= Could define

A = A(s)or A, = A+

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

34

36

Conclusions

(3 Provides efficient, incremental way to combine MC and
TD

= Includes advantages of MC (can deal with lack of
Markov property)

s Includes advantages of TD (using TD error,
bootstrapping)

(3 Can significantly speed learning

(3 Does have a cost in computation

R. S. Sutton and A. G. Barto: Rei: Leaning: An i 37

Something Here is Not Like the Other

b) Forward View

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

a) Backward View

—

38

