Chapter 7: Eligibility Traces
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N-step TD Prediction

Midterm

(A Idea: Look farther into the future when you do TD backup

(1,2,3,...,n steps)
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Mathematics of N-step TD Prediction

(3 Monte Carlo:

n-step Monte Carlo

2 T-t-1
R =t + VY s+ 4y 7T r

A TD: RY =r, +yV,(s,,,)

= Use V to estimate remaining return

O n-step TD:

» 2stepreturn: R =7, +yr,, +vVi(s,,,)

= T+l

. n 2 n-1 n
= n-step return: R =g 4y, +y 4ty T, 1V (s,,)
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Learning with N-step Backups

(3 Backup (on-line or off-line):

AV/(s) = a[R" - V(s)]
(3 Error reduction property of n-step returns

mSax‘E]r {R|s, =s}-V" (S)‘ =y" msax‘V(s) - (S)‘
H—/

n step return
_ J \ )
e

Maximum error using n-step return Maximum error using V

(3 Using this, you can show that n-step methods converge
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A Larger Example

ON-LINE
n-sTeP TD

(3 Task: 19 state

random walk
RMS error,
averaged over
first 10 episodes

(3 Do you think there
is an optimal n (for
everything)?

OFF-LINE
n-STEP TD

RMS error,
averaged over
first 10 episodes
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Random Walk Examples

start

(3 How does 2-step TD work here?
(3 How about 3-step TD?
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Averaging N-step Returns

3 n-step methods were introduced to help with One backup
TD(M) understanding
(1 Idea: backup an average of several returns
= e.g. backup half of 2-step and half of 4-
step
1 1

R™ =—R? +—RY
2 2

0=

(O Called a complex backup
= Draw each component

= Label with the weights for that
component

=
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Forward View of TD(M\)

TD(A), A-return

O TD(A) is a method for

averaging all n-step backups
= weight by A™! (time since
visitation)
= A-return: =2
A _ _ - n-1p(n)
R’ =(1-HF "R o
O Backup using A-return:
N (-2 .
AV(s)=a[R - V(s,)] , :
- &
Z }LT~1-1
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Relation to TD(0) and MC
(3 A-return can be rewritten as:
T-t-1
R =(1-2) Y X'R™+ X"'R,
n=1
Until termination ~ After termination
O If A =1, you get MC:
T-t-1
er _ (1_ 1) Zln—er(n) + lT_t_er _ R,
n=1
 If A =0, you get TD(0)
T-t-1
RA = (1_0) Eon—er(n) + OT—t—er = R(l)
n=1
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A-return Weighting Function

weight given to
the 3-step retum total area = 1

decay by A

weight given to
actual, final retum

Time ——=

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Forward View of TD(A) 11

(3 Look forward from each state to determine update from
future states and rewards:
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A-return on the Random Walk Backward View of TD(\)

5571 T

OFF-LINE (A The forward view was for theory
A-RETURN

- (3 The backward view is for mechanism
RMS error, 5|
averaged over

first 10 episodes |

[ New variable called eligibility trace  e,(s)| X°

= On each step, decay all traces by yA and increment the
a-h . ; . trace for the current state by 1

35

o = Accumulating trace

(3 Same 19 state random walk as before .
y)‘er—l(s) lf §# S[ accumulating eligibility trace
(0 Why do you think intermediate values of A are best? e(s) =

V)\et_l(S) + 1 lf § = Sr 1111 || | times of visits to a state
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On-line Tabular TD(\) Backward View

Initialize V(s) arbitrarily and e(s) =0, for all s ES
Repeat (for each episode) :
Initialize s
Repeat (for each step of episode) :
a < action given by mfor s
Take action a, observe reward, r, and next state s’
O <=r+yV(s)-V(s)
e(s)<—e(s) +1

For alls: 6: =l +VVz(St+1)_Vt(St)
V(s) <= V(s) + ade(s)
e(s) < yAe(s) (3 Shout 6, backwards over time
s (O The strength of your voice decreases with temporal
Until s is terminal distance by yA
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Relation of Backwards View to MC & TD(0)

(1 Using update rule:
AV,(s) = ad e (s)

(3 As before, if you set A to 0, you get to TD(0)
(3 If you set A to 1, you get MC but in a better way
= Can apply TD(1) to continuing tasks

= Works incrementally and on-line (instead of waiting to
the end of the episode)
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On-line versus Off-line on Random Walk

A Online TD()
55 9
: OFF-LINE 54 A on Random Walk
< A-RETURN R
Average 77
RMSerror, 5| RMSE
averaged over N over First
first 10 episodes | 10 Trials 35 =N
354 34
3= T - | 25— T T T T 1
o 01 02 03 0 0.2 0.4 0.6 08 1
o o

[ Same 19 state random walk

O On-line performs better over a broader range of parameters
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Forward View = Backward View

(A The forward (theoretical) view of TD(A) is equivalent to
the backward (mechanistic) view for off-line updating
(3 The book shows:

T-1 T-1
AV (s) =Y AV (s)I.,

%(_}%(_}

Backward updates Forward updates

algebra shown in book

T-1 T-1 T-1 T-1 T-1 T

- -1
() = Y al, (S, AVA(s)L, = Dal, > (),
t=0 k=t t=0 t=0 k=t

A
=0
(3 On-line updating with small o is similar
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Control: Sarsa(\)

O Save eligibility for state-action

pairs instead of just states Sarsa(})
(% - s, a
e(sa)= vhe,_(s,a)+1 ifs=sanda=aq, 1 L.
o ye,_(s,a) otherwise
(1-2) 2

0,.,(s,a) = Q,(s,a) +ad.e,s,a)

(1-2) 22
51 =gt yQt(‘YHl’aHl) - Qr(st’ ar)

>=1 . . a‘ff'r

A
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Sarsa(A) Algorithm

Initialize Q(s,a) arbitrarily and e(s,a) = 0, for all s,a
Repeat (for each episode) :
Initialize s,a
Repeat (for each step of episode) :
Take action a, observe r,s’
Choose a’ from s’ using policy derived from Q (e.g. ? - greedy)
O < r+y0(s’,a") - 0(s,a)
e(s,a)<e(s,a) +1
For all s,a:
s, a) < Q(s, a) + ade(s, a)
e(s,a) < yle(s,a)
s<sia<a'

Until s is terminal
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Three Approaches to Q(\)

Watkins's Q(A)

[ How can we extend this to Q- -5
learning? (}

O If you mark every state action
pair as eligible, you backup

. OR
over non-greedy policy (-4

= Watkins: Zero out
eligibility trace after a non-
greedy action. Do max .. .
when backing up at first e -

non-greedy choice. o

(1-3) 2

1+vyke, (s,a) ifs=s,a=a,0_(s,a,)=max,6Q_(s,a)
e(s,a) = 0 if Q,_,(s,,a,) = max, Q,_(s,,a)
yhe,_\(s,a) otherwise

0,..(s,a) = Q (s,a) +ade,(s,a)
O, =1, +ymax, 0(s,,,a) - 0,(s,,a,)
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Sarsa(A) Gridworld Example

Action values increased Action values increased
Path taken by one-step Sarsa by Sarsa()) with A=0.9
[ ] e B s I
[ [ ’ ¥
. “H - 4
T TR % SERNNENE
e i Nt

(0 With one trial, the agent has much more information about how to get
to the goal

= not necessarily the best way

(3 Can considerably accelerate learning
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Watkins’s Q(\)

Initialize Q(s,a) arbitrarily and e(s,a) = 0, for all s,a
Repeat (for each episode) :
Initialize s,a
Repeat (for each step of episode) :
Take action a, observe r,s’
Choose a’ from s’ using policy derived from Q (e.g. ? - greedy)
a’ < argmax, O(s',b) (if a ties for the max, then a” < ')
S <—r+y0(s,a") - Q(s.a’)
e(s,a)<e(s,a) +1
For all s,a:
s, a) < Q(s,a) +ade(s, a)
Ifa’' = a*, then e(s,a) < yAe(s,a)
else e(s,a) <=0
s<sha<a'

Until s is terminal
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Peng’s Q(A)

Naive Q(A\)

O Disadvantage to Watkins’s
method:

Peng's Q(A)

= Early in learning, the
eligibility trace will be
“cut” (zeroed out)
frequently resulting in little
advantage to traces

O Peng:

= Backup max action except ’
atend (-2 %

= Never cut traces
O Disadvantage:

7-1-1
= Complicated to implement T
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Comparison Task

(1 Idea: is it really a problem to
backup exploratory actions?

1-2 « s
(1-2) 2 O Is this truly naive?
(0 Works well is preliminary

empirical studies

Never zero traces

Always backup max at
current action (unlike Peng
or Watkins’s)

What is the backup diagram?
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Comparison Results

(3 Compared Watkins’s, Peng’s, and Naive (called
McGovern’s here) Q(A) on several tasks.

» See McGovern and Sutton (1997). Towards a Better Q(
A) for other tasks and results (stochastic tasks,
continuing tasks, etc)

(0 Deterministic gridworld with obstacles
» 10x10 gridworld
= 25 randomly generated obstacles

Policy steps

— Watkins
— Peng
—- McGovem

Steps to goal for greedy policy

= 30 runs
j— j— j— — 1 00 2'0 4'0 5‘0 8‘0 1(‘70 1‘20 11;0 1!'30 1;0 2[')0
s a=0.05,y=0.9,A=0.9, e =0.05, accumulating traces Episodes
From McGovern and Sutton (1997). Towards a better Q(\) From McGovern and Sutton (1997). Towards a better Q(A)
R. S. Sutton and A. G. Barto: Rei: Leamning: An i 27 R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 28




Convergence of the Q(\)’s

(3 None of the methods are proven to converge.
s Much extra credit if you can prove any of them.
3 Watkins’s is thought to converge to Q*
3 Peng’s is thought to converge to a mixture of Q™ and Q*
(3 Naive - Q*?
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Replacing Traces

(3 Using accumulating traces, frequently visited states can
have eligibilities greater than 1

= This can be a problem for convergence

(0 Replacing traces: Instead of adding 1 when you visit a
state, set that trace to 1

| ‘ | | | ‘ | times of state visits

[\[\M FN accumulating trace

]\J\\_M N replacing trace

vie, (s) ifs=s,
e(s) = .
1 ifs=s,
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Eligibility Traces for Actor-Critic Methods

(A Critic: On-policy learning of V7. Use TD(A) as described
before.
(O Actor: Needs eligibility traces for each state-action pair.

(0 We change the update equation:

p(s,a)+ad, ifa=aand s=s,

p,,.<s,a>={ {0 Pu(sa)=p,(s.a)+ad e, (s,a)

p,(s,a) otherwise

(0 Can change the other actor-critic update:

p(s,a)+ad [1-m(s,a)] ifa=a ands=s,

p,.1<s,a>={ {0 Prn(s5.0) = py(s.0)+adie,(s.a)

p,(s,a) otherwise

yle, (s,a)+1-m,(s,,a) if s=sanda=aq,

where  e(s,a) = { Ve, (s,a) otherwise
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Replacing Traces Example

(3 Same 19 state random walk task as before
(O Replacing traces perform better than accumulating traces over more

values of A
0.5
i
é
0.4 4 !
accumulating !
RMS error ] traces %
atbest o
0.3 4
0.2 replacing
traces
0 02 04 06 08 1
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Why Replacing Traces?

O Replacing traces can significantly speed learning

O They can make the system perform well for a broader set of
parameters

O Accumulating traces can do poorly on certain types of tasks

Why is this task particularly onerous
for accumulating traces?
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Implementation Issues

(3 Could require much more computation
= But most eligibility traces are VERY close to zero

(A If you implement it in Matlab, backup is only one line of
code and is very fast (Matlab is optimized for matrices)

R. S. Sutton and A. G. Barto: Rei: Leaning: An
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More Replacing Traces

(O Off-line replacing trace TD(1) is identical to first-visit MC

[ Extension to action-values:

= When you revisit a state, what should you do with the
traces for the other actions?

= Singh and Sutton say to set them to zero:

1 ifs=s and a =gq,
e(s,a)= 0 ifs=s and a=aq,
yle,_,(s,a) if =3,
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Variable A

(3 Can generalize to variable A

yAe, (s) ifs=s,
¢ (s) = {y)u,et_l(s) +1 ifs=y,

[ Here A is a function of time
= Could define

A = A(s)or A, = A+

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction
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Conclusions

(3 Provides efficient, incremental way to combine MC and
TD

= Includes advantages of MC (can deal with lack of
Markov property)

s Includes advantages of TD (using TD error,
bootstrapping)

(3 Can significantly speed learning

(3 Does have a cost in computation
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Something Here is Not Like the Other

b) Forward View
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a) Backward View

—
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