Chapter 7: Eligibility Traces

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

N-step TD Prediction

☐ Idea: Look farther into the future when you do TD backup (1, 2, 3, ..., n steps)

Midterm

 $Mean = 77.33 \quad Median = 82$

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Mathematics of N-step TD Prediction

Monte Carlo: $R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots + \gamma^{T-t-1} r_T$

TD: $R_t^{(1)} = r_{t+1} + \gamma V_t(s_{t+1})$

• Use V to estimate remaining return

n-step TD:

• 2 step return: $R_t^{(2)} = r_{t+1} + \gamma r_{t+2} + \gamma^2 V_t(s_{t+2})$

• n-step return: $R_t^{(n)} = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots + \gamma^{n-1} r_{t+n} + \gamma^n V_t(s_{t+n})$

3

Learning with N-step Backups

☐ Backup (on-line or off-line):

$$\Delta V_t(s_t) = \alpha \Big[R_t^{(n)} - V_t(s_t) \Big]$$

☐ Error reduction property of n-step returns

$$\max_{s} \left| E_{\pi} \left\{ R_{t}^{n} \mid s_{t} = s \right\} - V^{\pi}(s) \right| \leq \gamma^{n} \max_{s} \left| V(s) - V^{\pi}(s) \right|$$
Maximum error using n-step return
$$\max_{s} \left| V(s) - V^{\pi}(s) \right|$$

☐ Using this, you can show that n-step methods converge

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

5

7

Random Walk Examples

- ☐ How does 2-step TD work here?
- ☐ How about 3-step TD?

A Larger Example

- ☐ Task: 19 state random walk
- ☐ Do you think there is an optimal n (for everything)?

Averaging N-step Returns

- \square n-step methods were introduced to help with $TD(\lambda)$ understanding
- ☐ Idea: backup an average of several returns
 - e.g. backup half of 2-step and half of 4step

$$R_t^{avg} = \frac{1}{2}R_t^{(2)} + \frac{1}{2}R_t^{(4)}$$

- Called a complex backup
 - Draw each component
 - Label with the weights for that component

Forward View of $TD(\lambda)$

- TD(λ) is a method for averaging all n-step backups
 - weight by λⁿ⁻¹ (time since visitation)
 - λ-return:

$$R_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} R_t^{(n)}$$

 \square Backup using λ -return:

$$\Delta V_t(s_t) = \alpha \Big[R_t^{\lambda} - V_t(s_t) \Big]$$

λ-return Weighting Function

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Relation to TD(0) and MC

 \square λ -return can be rewritten as:

$$R_{t}^{\lambda} = (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} R_{t}^{(n)} + \lambda^{T-t-1} R_{t}^{(n)}$$

Until termination After termination

 \square If $\lambda = 1$, you get MC:

$$R_t^{\lambda} = (1-1) \sum_{n=1}^{T-t-1} 1^{n-1} R_t^{(n)} + 1^{T-t-1} R_t = R_t$$

 \square If $\lambda = 0$, you get TD(0)

$$R_t^{\lambda} = (1 - 0) \sum_{n=1}^{T-t-1} 0^{n-1} R_t^{(n)} + 0^{T-t-1} R_t = R_t^{(1)}$$

Forward View of TD(λ) II

☐ Look forward from each state to determine update from future states and rewards:

11

λ-return on the Random Walk

- ☐ Same 19 state random walk as before
- \square Why do you think intermediate values of λ are best?

 $e_{t}(s) = \begin{cases} \gamma \lambda e_{t-1} \\ \gamma \lambda e_{t-1} \end{cases}$

 $\begin{array}{ll} (s) & \text{if } s \neq s_t \\ (s) + 1 & \text{if } s = s_t \end{array}$

Accumulating trace

☐ The forward view was for theory

☐ The backward view is for mechanism

■ New variable called *eligibility trace*

trace for the current state by 1

 $e_{\star}(s)|\sum_{s=1}^{+}$

times of visits to a state

14

times of visits to a state

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

R. S. Sutton and A. G.

13

15

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

On-line Tabular TD(λ)

Initialize V(s) arbitrarily and e(s) = 0, for all $s \in S$ Repeat (for each episode):

Initialize s

Repeat (for each step of episode):

 $a \leftarrow$ action given by π for s

Take action a, observe reward, r, and next state s'

$$\delta \leftarrow r + \gamma V(s') - V(s)$$

 $e(s) \leftarrow e(s) + 1$

For all s:

$$V(s) \leftarrow V(s) + \alpha \delta e(s)$$

$$e(s) \leftarrow \gamma \lambda e(s)$$

 $s \leftarrow s'$

Until s is terminal

Backward View

Backward View of $TD(\lambda)$

• On each step, decay all traces by $\gamma\lambda$ and increment the

$$\delta_t = r_{t+1} + \gamma V_t(s_{t+1}) - V_t(s_t)$$

- \square Shout δ_t backwards over time
- ☐ The strength of your voice decreases with temporal distance by $\gamma\lambda$

Relation of Backwards View to MC & TD(0)

Using update rule:

$$\Delta V_t(s) = \alpha \delta_t e_t(s)$$

- \square As before, if you set λ to 0, you get to TD(0)
- \square If you set λ to 1, you get MC but in a better way
 - Can apply TD(1) to continuing tasks
 - Works incrementally and on-line (instead of waiting to the end of the episode)

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

17

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

18

On-line versus Off-line on Random Walk

- ☐ Same 19 state random walk
- On-line performs better over a broader range of parameters

Forward View = Backward View

- \Box The forward (theoretical) view of TD(λ) is equivalent to the backward (mechanistic) view for off-line updating
- ☐ The book shows:

$$\sum_{t=0}^{T-1} \Delta V_t^{TD}(s) = \sum_{t=0}^{T-1} \Delta V_t^{\lambda}(s_t) I_{s,s}$$

Backward updates Forward updates

 \Box On-line updating with small α is similar

Control: Sarsa(λ)

 Save eligibility for state-action pairs instead of just states

$$e_t(s, a) = \begin{cases} \gamma \lambda e_{t-1}(s, a) + 1 & \text{if } s = s_t \text{ and } a = a \\ \gamma \lambda e_{t-1}(s, a) & \text{otherwise} \end{cases}$$

$$Q_{t+1}(s, a) = Q_t(s, a) + \alpha \delta_t e_t(s, a)$$

$$\delta_t = r_{t+1} + \gamma Q_t(s_{t+1}, a_{t+1}) - Q_t(s_t, a_t)$$

Sarsa(λ) Algorithm

Initialize Q(s,a) arbitrarily and e(s,a) = 0, for all s,aRepeat (for each episode):

Initialize s, a

Repeat (for each step of episode):

Take action a, observe r, s'

Choose a' from s' using policy derived from Q (e.g. ? - greedy)

$$\delta \leftarrow r + \gamma Q(s',a') - Q(s,a)$$

$$e(s,a) \leftarrow e(s,a) + 1$$

For all s.a:

$$Q(s,a) \leftarrow Q(s,a) + \alpha \delta e(s,a)$$

$$e(s, a) \leftarrow \gamma \lambda e(s, a)$$

$$s \leftarrow s'; a \leftarrow a'$$

Until s is terminal

Sarsa(λ) Gridworld Example

Path taken

Action values increased by one-step Sarsa

Action values increased by Sarsa(λ) with λ =0.9

- ☐ With one trial, the agent has much more information about how to get to the goal
 - not necessarily the best way
- Can considerably accelerate learning

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

21

23

Three Approaches to $Q(\lambda)$

- ☐ How can we extend this to Qlearning?
- ☐ If you mark every state action pair as eligible, you backup over non-greedy policy
 - Watkins: Zero out eligibility trace after a nongreedy action. Do max when backing up at first non-greedy choice.

etion. Do max
king up at first
dy choice.

$$\begin{cases}
1 + \gamma \lambda e_{t-1}(s, a) & \text{if } s = s_t, a = a_t, Q_{t-1}(s_t, a_t) = \max_a Q_{t-1}(s_t, a) \\
0 & \text{if } Q_{t-1}(s_t, a_t) \neq \max_a Q_{t-1}(s_t, a) \\
\gamma \lambda e_{t-1}(s, a) & \text{otherwise}
\end{cases}$$

Watkins's Q(λ)

$$\begin{split} Q_{t+1}(s, a) &= Q_t(s, a) + \alpha \delta_t e_t(s, a) \\ \delta_t &= r_{t+1} + \gamma \max_{a'} Q_t(s_{t+1}, a') - Q_t(s_t, a_t) \end{split}$$

0

 $\gamma \lambda e_{t-1}(s,a)$

Watkins's $Q(\lambda)$

Initialize Q(s,a) arbitrarily and e(s,a) = 0, for all s,a

Repeat (for each episode):

Initialize s, a

Repeat (for each step of episode):

Take action a, observe r, s'

Choose a' from s' using policy derived from Q (e.g. ? - greedy)

 $a^* \leftarrow \arg\max_b Q(s', b)$ (if a ties for the max, then $a^* \leftarrow a'$)

 $\delta \leftarrow r + \gamma O(s', a') - O(s, a^*)$

 $e(s,a) \leftarrow e(s,a) + 1$

For all s,a:

 $Q(s,a) \leftarrow Q(s,a) + \alpha \delta e(s,a)$

If $a' = a^*$, then $e(s, a) \leftarrow \gamma \lambda e(s, a)$

else $e(s, a) \leftarrow 0$

 $s \leftarrow s'; a \leftarrow a'$

Until s is terminal

 $e_{\iota}(s,a) = \langle$

Peng's $Q(\lambda)$

- Disadvantage to Watkins's method:
 - Early in learning, the eligibility trace will be "cut" (zeroed out) frequently resulting in little advantage to traces

- Backup max action except at end
- Never cut traces
- Disadvantage:
 - Complicated to implement

Naïve $Q(\lambda)$

- ☐ Idea: is it really a problem to backup exploratory actions?
 - Never zero traces
 - Always backup max at current action (unlike Peng or Watkins's)
- ☐ Is this truly naïve?
- ☐ Works well is preliminary empirical studies

What is the backup diagram?

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Comparison Task

- \square Compared Watkins's, Peng's, and Naïve (called McGovern's here) $Q(\lambda)$ on several tasks.
 - See McGovern and Sutton (1997). Towards a Better Q(λ) for other tasks and results (stochastic tasks, continuing tasks, etc)
- Deterministic gridworld with obstacles
 - 10x10 gridworld
 - 25 randomly generated obstacles
 - 30 runs
 - $\alpha = 0.05$, $\gamma = 0.9$, $\lambda = 0.9$, $\epsilon = 0.05$, accumulating traces

From McGovern and Sutton (1997). Towards a better $Q(\lambda)$

Comparison Results

From McGovern and Sutton (1997). Towards a better $Q(\lambda)$

25

Convergence of the $Q(\lambda)$'s

- ☐ None of the methods are proven to converge.
 - Much extra credit if you can prove any of them.
- Watkins's is thought to converge to Q*
- \square Peng's is thought to converge to a mixture of Q^{π} and Q^*
- □ Naïve Q*?

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

29

31

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Eligibility Traces for Actor-Critic Methods

- \square *Critic:* On-policy learning of V^{π} . Use $TD(\lambda)$ as described before.
- ☐ *Actor:* Needs eligibility traces for each state-action pair.
- ☐ We change the update equation:

$$p_{t+1}(s,a) = \begin{cases} p_t(s,a) + \alpha \delta_t & \text{if } a = a_t \text{ and } s = s_t \\ p_t(s,a) & \text{otherwise} \end{cases}$$
to
$$p_{t+1}(s,a) = p_t(s,a) + \alpha \delta_t e_t(s,a)$$

☐ Can change the other actor-critic update:

$$p_{t+1}(s,a) = \begin{cases} p_t(s,a) + \alpha \delta_t [1 - \pi(s,a)] & \text{if } a = a_t \text{ and } s = s_t \\ p_t(s,a) & \text{otherwise} \end{cases} \quad \text{to} \quad p_{t+1}(s,a) = p_t(s,a) + \alpha \delta_t e_t(s,a)$$

where
$$e_{t}(s,a) = \begin{cases} \gamma \lambda e_{t-1}(s,a) + 1 - \pi_{t}(s_{t},a_{t}) & \text{if } s = s_{t} \text{ and } a = a_{t} \\ \gamma \lambda e_{t-1}(s,a) & \text{otherwise} \end{cases}$$

Replacing Traces

- ☐ Using accumulating traces, frequently visited states can have eligibilities greater than 1
 - This can be a problem for convergence
- ☐ *Replacing traces:* Instead of adding 1 when you visit a state, set that trace to 1

$$e_{t}(s) = \begin{cases} \gamma \lambda e_{t-1}(s) & \text{if } s \neq s_{t} \\ 1 & \text{if } s = s_{t} \end{cases}$$
 times of state visits accumulating trace

Replacing Traces Example

- ☐ Same 19 state random walk task as before
- $\hfill \square$ Replacing traces perform better than accumulating traces over more values of λ

Why Replacing Traces?

- ☐ Replacing traces can significantly speed learning
- ☐ They can make the system perform well for a broader set of parameters
- ☐ Accumulating traces can do poorly on certain types of tasks

Why is this task particularly onerous for accumulating traces?

Implementation Issues

• But most eligibility traces are VERY close to zero

☐ If you implement it in Matlab, backup is only one line of code and is very fast (Matlab is optimized for matrices)

☐ Could require much more computation

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Variable \(\lambda \)

 \Box Can generalize to variable λ

$$e_t(s) = \begin{cases} \gamma \lambda_t e_{t-1}(s) & \text{if } s \neq s_t \\ \gamma \lambda_t e_{t-1}(s) + 1 & \text{if } s = s_t \end{cases}$$

- \square Here λ is a function of time
 - Could define

$$\lambda_t = \lambda(s_t) \text{ or } \lambda_t = \lambda^{t/\tau}$$

More Replacing Traces

- ☐ Off-line replacing trace TD(1) is identical to first-visit MC
- ☐ Extension to action-values:
 - When you revisit a state, what should you do with the traces for the other actions?
 - Singh and Sutton say to set them to zero:

$$e_t(s, a) = \begin{cases} 1 & \text{if } s = s_t \text{ and } a = a_t \\ 0 & \text{if } s = s_t \text{ and } a \neq a_t \\ \gamma \lambda e_{t-1}(s, a) & \text{if } s \neq s_t \end{cases}$$

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

33

35

Conclusions

- ☐ Provides efficient, incremental way to combine MC and TD
 - Includes advantages of MC (can deal with lack of Markov property)
 - Includes advantages of TD (using TD error, bootstrapping)
- ☐ Can significantly speed learning
- Does have a cost in computation

Something Here is Not Like the Other

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction